Posts tagged Payara Server Basics (2)

Fundamentos de Payara Server Parte 6 - Creando un cluster dinámico con conmutación por fallas en Payara Server con Hazelcast

Avanzando más nuestra serie de blogs de introducción, esta entrada mostrará como puedes escalar de forma dinámica tu cluster, y como Payara Server maneja la conmutación por fallas entre miembros del cluster.

 

See here for the original version in English language.

 

La conmutación por fallas es la habilidad de continuar proporcionando acceso a nuestro sitio web o aplicación en el caso de que un servidor falle. Es una parte importante de un servicio que goza de alta disponibilidad, cuyo objetivo es minimizar los tiempos de inactividad a lo largo de tu infraestructura de servicios.

Recent Additions in MicroProfile Config 1.1

Configuration is an important aspect of programming. However, a standard approach to it has been missing in Java for a long time. A year ago, the MicroProfile project decided to change that. I'm glad I could be part of it and help design the new API. One year later, a common configuration API aiming to set a standard is a reality, with several released versions and multiple projects that provide it. Payara Server and Payara Micro have supported MicroProfile Config API since version 4.1.2.173. We added support for Config 1.1 in version 4.1.2.174 and completed the support for all Eclipse MicroProfile 1.2 features in version 4.1.2.181. So let's summarize what's new since Config 1.0.

Payara Server Basics Part 7 - Creating a simple Payara Server Cluster in Windows with DCOM

Taking our introductory series onwards, this blog will look at how you set up a simple Payara Server cluster on Windows using the native remote control protocol, DCOM. We will set up two instances on Windows 10, controlled by a third Domain Administration Server (DAS) instance on Windows 7 via DCOM, and cluster them together using Hazelcast. Finally, we will deploy our trusty clusterjsp application to demonstrate how the data is being shared across our instances.

Payara Server Basics Part 6 - Dynamic Clustering and Failover on Payara Server with Hazelcast

Further developing our introductory blog series, this post will look at how you can dynamically scale your cluster, and how Payara Server handles failover between cluster members.

 

Failover is the ability to continue to provide access to your website or application in the event of a server failing. It is an important part of high availability hosting, which aims to minimise downtime across your server infrastructure.

Payara Server Basics Part 5 - Configuring Sticky Sessions for Payara Server with Apache Web Server

This article continues our introductory blog series on setting up a simple cluster with Payara Server, carrying straight on from our last blog where we set up load balancer on our cluster.

 

By clustering our Payara Servers together and balancing traffic between them with Apache Web Server we keep the benefits of having our application accessible from a single URL and gain the resilience and expansion prospects from having our application deployed across multiple instances.

Fundamentos de Payara Server Parte 5 - Configurando Sesiones Persistentes para Payara Server con Servidor Web Apache

Este artículo continúa nuestra serie de blogs de introducción para configurar un cluster con Payara Server, continuando desde nuestro último articulo donde configuramos un balanceador de carga para nuestro cluster.

Payara Server Basics Part 4 - Load Balancing Across Payara Server Instances with Apache Web Server

Continuing our introductory blog series, this blog will demonstrate how to add load balancing capability to Apache Web Server and forward to our simple Payara Server cluster. 

A load balancer can redirect requests to multiple instances, primarily for the purpose of distributing incoming requests between cluster members based on pre-determined rules. This could be a simple "round-robin" algorithm, where the workload is distributed to each instance in turn, or a weighted algorithm where requests are delivered based on a pre-determined weight for each cluster member.