
The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible.

Using Hazelcast SQL with
Payara Micro

The Payara® Platform - Production-Ready,
Cloud Native and Aggressively Compatible.

Using Hazelcast SQL with Payara Micro

Contents

Hazelcast IDMG 1

Hazelcast SQL 1

Payara Domain Data Grid 2

Using Hazelcast SQL 3

Conclusion	 5

Using Hazelcast SQL with Payara Micro

1

Hazelcast IDMG

“An in-memory data grid (IMDG) is a set of networked/clustered computers that pool together their
random access memory (RAM) to let applications share data with other applications running in
the cluster.”

Hazelcast IMDG allows you to store several different data structures. You can use Lists, Maps, Queue
and other structures to organize the information stored in the Data Grid. They all implement the Java
equivalent interfaces and process the information in a fashion we are familiar with in Java.

However, looping over the contents of the Map values, for example, is not the most efficient way to
do this. When you loop over the data, you need to fetch them from the different cluster members as
not all data is available in the local member. Data is usually stored throughout several members of
the cluster. So when you loop over all entries, data will be fetched from different members, resulting
in network overhead and latency.

Instead of looping over all entries of the local Map, you should create a Distributed Query within
Hazelcast. The cluster will execute this query on each cluster member and send the result back
to the member that requested the results. This way, a lot less network overhead does occur, and
the search will be much faster. Each member of the cluster is involved and not only the instance
embedded in your application.

Hazelcast SQL

Java developers are more familiar with standard Java interfaces like List and Map than with writing
such a Distributed Query. The result is that data is searched locally in an inefficient way. Yet, many
developers do know SQL or the variant used in JPA. With Hazelcast SQL, the goal is to search data
within the In-Memory Data Grid more efficiently and easily. So you can write a SQL query that will
search an IMap to return entries that match your query.

As an example, imagine an IMap with Person objects. Person has properties like name and age. You
can write a query to return all people younger than 18. Under the hood, Hazelcast parses the query
with Apache Calcite, queries each node using the Distributed Query, and aggregates the results: this
means the search is performed as efficiently as possible.

https://hazelcast.com/

Using Hazelcast SQL with Payara Micro

2

Payara Domain Data Grid

The Payara Platform products can run your Java Enterprise application in many environments -
including IoT and edge types like the RaspberryPi, over Virtual Machine, and Containerized and cloud
environments. Payara Platform Enterprise is stable, supported software for enterprise designed for
mission critical production systems and containerized Jakarta EE (Java EE) and MicroProfile appli-
cations. Choose Payara Server for reliable and secure deployments of Jakarta EE and MicroProfile
applications in any environment, or Payara Micro for containerized microservices deployments with
no installation, configuration, or code rewrites required.

The Payara Platform products also support clustering in an easy-to-set-up way within all environ-
ments, making use of the Hazelcast In-memory Data Grid for this purpose. The Data Grid makes it
easy to share data between the different instances of your applications, provides support for the
JCache specification, and you can use it to provide session replication for your environment. The
HTTP session data is stored within The Hazelcast Data Grid and available across all Payara instances
when activated.

If you store data in a session on a node and that node goes down, the user can be redirected to
another node: the data is replicated and will be available.

https://www.payara.fish/products/payara-server/
https://www.payara.fish/products/payara-micro/

Using Hazelcast SQL with Payara Micro

3

However, it doesn’t stop at session replication. You can share any data on any node and retrieve it
on another node. You can think about it as a datastore with faster access.

A classic example of such usage is an e-commerce application. While storing a user’s cart content
in a database makes sense, accessing the latter on each request might be too slow. In that case,
keep the cart in memory and let Hazelcast take care of the replication across the Payara nodes if
the current node goes down.

When you start relying on Hazelcast to store data, the chances are that you’ll need to query the
cluster at one point or another. The good side about SQL databases is that they allow SQL queries
- though you might point out it depends on the exact SQL version, that’s a debate for another day.

On the other hand, most NoSQL datastores offer a query API, but it’s, in general, a proprietary one
that you need to learn for each store. Fortunately, the current trend of NoSQL vendors is to add a
SQL API on top (in complement?) of their API. Hazelcast is no different.

It opens up a lot of new opportunities. Regarding the previous example of carts, you might keep the
cart in the database because your analysts want to be able to get insight into their customers’ habits:
what’s the average number of products in a cart, what’s the average item price in a cart, etc.? But
they don’t want to learn a new API. By offering a SQL API, Hazelcast allows you to not compromise
on performance while keeping your analysts happy.

Of course, there are plenty of other use-cases. If you use Hazelcast as a cache, you can now search
your cache directly.

Using Hazelcast SQL

As Payara already provides the Hazelcast dependency, you only need to add the Hazelcast SQL JAR
to start querying your cluster.

Start the Payara Micro node with the --addjars parameter and pass the location of the JAR, e.g.,
java -jar payara-micro-5.2021.3.jar --addjars hazelcast-sql-4.2.jar

At this point, you’re ready to execute SQL queries on your cluster.

Hazelcast SQL queries require access to the Hazelcast Instance, and you need to know the name
of the Hazelcast Map that contains the Java instances you want to search. The following example
gives you an idea of how you can achieve it.

https://github.com/hazelcast/hazelcast-jdbc

Using Hazelcast SQL with Payara Micro

4

@ApplicationScoped

public class CountryService {

 @Inject

 private HazelcastInstance hzInstance;

 public List<String> getCountries(String continent) {

		 List<String> result = new ArrayList<>();

		 try (SqlResult queryResult = hzInstance

 		 .getSql()

 		 .execute(

 	 "SELECT name FROM countries WHERE continentName = ?",

 	 continent)

) {

	 for (SqlRow row : queryResult) {

	 String name = row.getObject(0);

} } result.add(name);

return result;

 }

}

In the above example, the CountryService class is defined as a CDI bean where we have injected
the HazelcastInstance. The HazelcastInstance variable is the Hazelcast defined one so we have
access to all functionality.

The query can be defined using the getSql() statement in a very similar fashion to regular SQL. In
the example, we have written the following query:

SELECT name FROM countries WHERE continentName = ?

Hazelcast looks in the above case for a Map with the name countries. It returns the value of the
property name from all entries in the map for those that match the continent value.

With Hazelcast SQL, you can turn Maps stored in the Domain Data Grid of Payara into a table and treat
the properties of the POJO entries in that map as fields. As of now, SQL is in beta, and full ANSI-SQL
is not fully supported. Expect additional capabilities in upcoming releases!

Using Hazelcast SQL with Payara Micro

5

info@payara.fish +44 207 754 0481 www.payara.fish

  

Payara Services Ltd 2021 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Conclusion

The Hazelcast In-Memory Data Grid is an efficient way of storing data in a distributed way within the
memory of the different processes of the cluster. The distributed design, however, means that search-
ing the data locally in your process is not efficient. All data needs to be ‘moved’ to your instance so
that it can be accessed. Hazelcast allows distributed queries so that the search is performed where
the data is, and only the results are transferred to your process.

With Hazelcast SQL, the Distributed Query capabilities are wrapped in another well-known concept
by developers and easier to use. Since the Payara products already use Hazelcast IMDG, using the
Hazelcast SQL capabilities is straightforward. You only need to add the additional JAR library and
can start using it.

mailto:info%40payara.fish?subject=
mailto:sales%40payara.fish?subject=
https://www.payara.fish

	Hazelcast IDMG
	Hazelcast SQL
	Payara Domain Data Grid
	Using Hazelcast SQL
	Conclusion

